Notes: 4.3 Logarithmic functions given: $y = a^x \rightarrow inverse$: $x = a^y$ (swap domain and range $)^{7}$ $a^y = x$ is equivalent to $y = \log_a x$ Example: $y = \log_2 32$ (or $\log_2 32 = y$) \rightarrow rewrite as $2^{y} = 32$ \rightarrow get like bases $2^{y} = 2^{5}$ therefore $y = 5 | so... \log_2 32 = 5$ **NOTES:** In is an abbreviation from the Latin name "logarithmus naturalis"

- $\log_e x \rightarrow$ normally written as $\ln x$
- e^x and lnx are inverses
- 10^x and logx are inverses
- 2^x and log₂x are inverses

 The graphs of inverses are symmetrical across the line y = x.

e^x and Inx

Natural Logarithm

 10^x and $\log x$ **Common Logarithm**

→You will be asked to sketch these without a graphing calculator on the quiz and test.

NOTE:

Exponential graphs have a horizontal asymptote at y = 0. Logarithmic graphs have a vertical asymptote at x = 0.

Today's assignment: 4.3 #30,32, 1-7odd, 25-43odd NO CALCULATOR!!

b) $\log_{49} 7 = X$ 30. a) $\log_5 125 = \times$ $49^{X} = 7$ $5^{x} = 125$ rewrite in show $\rightarrow 5^{x} = 5^{3}$ exponential form $7^{2x} = 7'$ $2 \times =$ bases X=3 c) $\log_9 \sqrt{3} = \times$ \rightarrow Write given info, then rewrite in a different $q^{2} = 13$ form and solve. \rightarrow Get matching bases on both sides when possible.

32.

a)
$$e^{\ln\sqrt{3}} = \chi$$
 (b) $e^{\ln\left(\frac{1}{\pi}\right)} = \chi$ (c) 10^{10}
 $\ln_e \chi = \ln_e \sqrt{3}$ $\ln_e \chi = \ln_e \pi$ $\log_1 \pi$
 $\chi = \sqrt{3}$ $\chi = \frac{1}{\pi}$

$$10^{\log 13} = X$$

 $\log_{10} X = \log_{10} 13$
 $\chi = 13$

33. Note: decimals are not a user-friendly form when working with exponents and logarithms

