Notes: 4.3 Logarithmic functions

given: $y=a^{x} \rightarrow$ inverse: $x=a^{y}$
$\hat{\mathrm{a}}_{(\text {swap domain and range })}$
$\mathrm{a}^{\mathrm{y}}=\mathrm{x}$ is equivalent to $\mathrm{y}=\log _{\mathrm{a}} \mathrm{x}$

Example: $y=\log _{2} 32 \quad\left(\right.$ or $\left.\log _{2} 32=y\right)$
\rightarrow rewrite as $2^{y}=32$
\rightarrow get like bases $2^{y}=2^{5}$ therefore $y=5$ so... $\log _{2} 32=5$

NOTES: In is an abbreviation from the Latin name "logarithmus naturalis"

- $\log _{\mathrm{e}} x \rightarrow$ normally written as $\ln x$
- e^{x} and $\ln x$ are inverses
- 10^{x} and $\log x$ are inverses
- 2^{x} and $\log _{2} x$ are inverses
- The graphs of inverses are symmetrical across the line $y=x$.

$$
2^{\mathrm{x}} \text { and } \log _{2} x \quad \mathrm{e}^{\mathrm{x}} \text { and } \ln x \quad 10^{x} \text { and } \log x
$$

General Logarithm

Natural Logarithm Common Logarithm

\rightarrow You will be asked to sketch these without a graphing calculator on the quiz and test.

NOTE:
Exponential graphs have a horizontal asymptote at $\mathrm{y}=0$. Logarithmic graphs have a vertical asymptote at $\mathrm{x}=0$.

Today's assignment: 4.3 \#30,32, 1-7odd, 25-43odd NO CALCULATOR!!
30. a) $\log _{5} 125=x$
b) $\log _{49} 7=x$

$$
\begin{array}{lr}
5^{x}=125 \text { rewrite in form } & 49^{x}=7 \\
\text { show } \longrightarrow 5^{2 x}=5^{3} \text { exponential form } \\
\text { like } & 2 x=1 \\
\text { bases } x=3 & x=\frac{1}{2}
\end{array}
$$

c) $\log _{9} \sqrt{3}=x$

$$
\begin{aligned}
& 9^{x}=\sqrt{3} \\
& 3^{2 x}=3^{\frac{1}{2}} \\
& 2 x=\frac{1}{2}
\end{aligned} \Rightarrow \frac{1}{2} \cdot 2 x=\frac{1}{2} \cdot \frac{1}{2} x=\frac{1}{4}
$$

\rightarrow Write given info, then rewrite in a different form and solve.
\rightarrow Get matching bases on both sides when possible.
32.
a) $e^{\ln \sqrt{3}}=x$
(b) $\mathrm{e}^{\ln \left(\frac{1}{\pi}\right)}=x$
c) $10^{\log 13}=x$

$$
\begin{gathered}
\ln _{e} x=\ln _{e} \sqrt{3} \\
x=\sqrt{3}
\end{gathered}
$$

$$
\ln x=\ln \frac{1}{e} \pi
$$

$$
\log _{10} x=\log _{10} 13
$$

$$
x=13
$$

33. Note: decimals are not a user-friendly form when working with exponents and logarithms
a) $\log _{8} 0.25=x$
\downarrow rewrite as a fraction

$$
8^{x}=\frac{1}{4}
$$

get
$1, k^{e}{ }^{\mathrm{ba}^{\text {es }}}$

$$
2^{3 x}=\frac{1}{2^{2}}
$$

$$
2^{3 x}=2^{-2}
$$

$$
3 x=-2
$$

$$
x=\frac{-2}{3}
$$

Solve

